Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Approach for Virtual Microstructure Generation and Micro-Mechanics Modelling for Micro-Forming Simulation

[+] Author Affiliations
Kar Cheong Ho, Nan Zhang, Jianguo Lin, Trevor Anthony Dean

University of Birmingham, Birmingham, UK

Paper No. MNC2007-21639, pp. 203-211; 9 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


To aid FE simulation for forming micro-components, an integrated approach is proposed to generate virtual microstructure for micro-mechanics modelling. Based on Voronoi tessellation and the probability theory, a VGRAIN system is created for the generation of grains and grain boundaries for micro-materials. The input data of the system are physical parameters of a material, including average, minimum and maximum grain sizes. Numerical procedures have been established to link the physical parameters of a material to the control variable in a gamma distribution equation and a method has been developed to solve the probability equation. These are the basis for the development of the VGRAIN system, which can be used to generate different grain structures and shapes that follow a certain pattern according to the probability theory. Statistical analyses have been carried out to investigate the distribution of generated virtual grains. The generated virtual microstructure is then implemented in the commercial FE code, ABAQUS, for mesh generation and micro-mechanics analysis using crystal plasticity equations for FCC materials. The crystal plasticity model is implemented in the commercial FE code, ABAQUS, through the used-defined subroutine, UMAT. FE analyses have been carried out to investigate size effects and localised necking encountered in micro-forming processes.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In