0

Full Content is available to subscribers

Subscribe/Learn More  >

Reliability of an 1657CCGA (Ceramic Column Grid Array) Package With 95.5Sn3.9Ag0.6Cu Lead-Free Solder Paste on PCBs (Printed Circuit Boards)

[+] Author Affiliations
John Lau, Walter Dauksher

Agilent Technologies, Inc., Santa Clara, CA

Paper No. IMECE2003-55041, pp. 229-238; 10 pages
doi:10.1115/IMECE2003-55041
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

In many applications such as computers and telecommunications, the IC chip sizes are very big, the on-chip frequency and power dissipation are very high, and the number of chip I/Os is very large. The CCGA (ceramic column grid array) package developed by IBM is one of the best candidates for housing these kinds of chips [1–7]. There are two parts in this study. One is to show that the 2-parameter Weibull life distribution is adequate for modeling the thermal-fatigue life of lead-free solder joints. This is demonstrated by comparing the 2-parameter and 3-parameter Weibull distributions with life test data of an 1657-pin CCGA package with the 95.5wt%Sn3.9wt%Ag0.6wt%Cu lead-free solder paste on lead-free PCBs (printed circuit boards) under thermal cycling conditions. The other part of this study is to determine the time-history creep strain energy density of the 1657-pin CCGA solder column with two different solder paste materials, namely, 95.5wt%Sn3.9wt%Ag0.6wt%Cu and 63wt%Sn37wt%Pb and under three different thermal cycling profiles, namely, 25 ↔ 75°C, 0 ↔ 100°C, and −25 ↔ 125°C. The effects of these solder pastes and temperature conditions on the thermal-fatigue life of the high-lead (10wt%Sn90wt%Pb) solder columns of the CCGA package are provided and discussed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In