Full Content is available to subscribers

Subscribe/Learn More  >

Multiobjective Topology Optimization of Compliant Microgripper With Geometrically Nonlinearity

[+] Author Affiliations
Zhaokun Li, Xianmin Zhang

South China University of Technology, Guangzhou, Guangdong, China

Paper No. MNC2007-21294, pp. 101-107; 7 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


Since compliant mechanism is usually required to perform in more than one environment, the ability to consider multiple objectives has to be included within the framework of topology optimization. And the topology optimization of micro-compliant mechanisms is actually a geometrically nonlinear problem. This paper deals with multiobjective topology optimization of micro-compliant mechanisms undergoing large deformation. The objective function is defined by the minimum compliance and maximum geometric advantage to design a mechanism which meets both stiffness and flexibility requirements. The weighted sum of conflicting objectives resulting from the norm method is used to generate the optimal compromise solutions, and the decision function is set to select the preferred solution. Geometrically nonlinear structural response is calculated using a Total-Lagrange finite element formulation and the equilibrium is found using an incremental scheme combined with Newton-Raphson iterations. The solid isotropic material with penalization approach is used in design of compliant mechanisms. The sensitivities of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. These methods are further investigated and realized with the numerical example of compliant microgripper, which is simulated to show the availability of this approach proposed in this paper.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In