0

Full Content is available to subscribers

Subscribe/Learn More  >

Metallic Nanowires From Carbon Nanotube Building Blocks: The Effect of Atomic Defects on the Nanotube Influencing Nanowire Growth

[+] Author Affiliations
B. Panchapakesan, Kousik Sivakumar, Shaoxin Lu

University of Delaware, Newark, DE

Paper No. IMECE2003-55042, pp. 193-201; 9 pages
doi:10.1115/IMECE2003-55042
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Manipulation and control of matter at the nano- and atomic level are crucial for the success of nano-scale sensors and actuators. The ability to control and synthesize multilayer structures using carbon nanotubes that will enable to build electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electric field assisted deposition of metals on carbon nanotubes realizing metallic nanowire structures. Silver and platinum nanowires has been fabricated using this approach due to its applications in chemical sensing sensing as catalytic materials to sniff toxic agents and in the area of biomedical nanotechnology for construction of artificial muscles. The electric field assisted technique allows the deposition of metals with high degree of selectivity on carbon nanotubes by manipulating the charges on the surface of the nanotubes. The thickness and the growth of the nanowires was altered by inducing defects on the initial surface of the nanotubes that affected the local current densities and electrochemical reduction of silver and platinum on those defect sites. SEM and TEM investigations revealed silver and platinum nanowires between 10 nm-100 nm in diameter. Relatively higher metal deposition was achieved in defect related sites or places where the nanotubes criss-crossed each other, due to the high current densities in these sites. The present technique is versatile and enables the fabrication of host of different types of metallic and semiconduting nanowires using carbon nanotube templates for nanoelectronics and myriad of sensor applications. Further, nanowires can also serve as model systems for studying quantum size effects in these dimensions.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In