0

Full Content is available to subscribers

Subscribe/Learn More  >

Bubble Based Micro/Nano Fabrication Method

[+] Author Affiliations
Xiao-Dan Bai, Jing Liu

Chinese Academy of Sciences, Beijing, China

Paper No. MNC2007-21246, pp. 71-81; 11 pages
doi:10.1115/MNC2007-21246
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Micro/nano structures, especially those in one dimensional, such as nano wires, are commonly used building blocks for the bottom-up assembly of electronic, photonic or mechanical devices. However, their fabrications are generally limited to the expensive equipments and methods capable of only working in an extremely small space. A big challenge facing the current scientific society is to overcome this barrier and build up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Here, we proposed a new conceptual fabrication method, which can easily be implemented to synthesize, etch and construct micro or nano structures through manipulating the large scale bubbles composed of specific chemical compounds. The core of the method lies in the chemical reaction occurring at the interfaces between two or more soap bubbles. A surprisingly unique virtue of the bubble is that it can have a rather large diameter however an extremely small membrane thickness, whose smallest size even reaches nano scale. Therefore, the chemical reaction and synthesis occurred in the common boundary of such contacting bubbles would lead to products with very small size. Most important of all, all these were achieved via a much easy and straightforward way. To better understand the physical picture of the new method, the principle and mechanism for the bubble based fabrication process were interpreted. Several fundamental equations for characterizing the bubbles were proposed and preliminarily discussed. As the first trial to demonstrate the new concept, several typical micro structures were successfully fabricated in our lab. Particularly, a micro wire which can be used as tiny temperature sensor was made and tested. Being flexible, easily controllable and observable, environmentally friend and extremely low in cost, the present method is expected to be a significant technical route for making micro/nano structures in the near future. It also indicated for the first time that blowing soap bubbles means not just funny but also opens a new world for micro/nano fabrication.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In