0

Full Content is available to subscribers

Subscribe/Learn More  >

Drop-Impact Reliability of Chip-Scale Packages in Handheld Products

[+] Author Affiliations
Guoyun Tian, Yueli Liu, Pradeep Lall, R. Wayne Johnson, Sanan Abderrahman, Mike Palmer, Nokib Islam, Dhananjay Panchgade, Jeffrey Suhling

Auburn University, Auburn, AL

Larry Crane

Henkel Loctite Corporation, CA

Paper No. IMECE2003-42075, pp. 135-143; 9 pages
doi:10.1115/IMECE2003-42075
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

The use of CSPs has expanded rapidly, particularly in portable electronic products. Many CSP designs will meet the thermal cycle or thermal shock requirements for these applications. However, mechanical shock (drop) and bending requirements often necessitate the use of underfills to increase the mechanical strength of the CSP-to-board connection. Capillary flow underfills processed after reflow, provide the most common solution to improving mechanical reliability. However, capillary underfill adds board dehydration, underfill dispense, flow and cure steps and the associated equipment to the assembly process. Corner bonding provides an alternate approach. Dots of underfill are dispensed at the four corners of the CSP site after solder paste print, but before CSP placement. During reflow the underfill cures, providing mechanical coupling between the CSP and the board at the corners of the CSP. Since only small areas of underfill are used, board dehydration is not required. This paper examines the manufacturing process for corner bonding including dispense volume, CSP placement and reflow. Drop test results are then presented. A conventional, capillary process was used for comparison of drop test results. Test results with corner bonding were intermediate between complete capillary underfill and non-underfilled CSPs. Finite element modeling results for the drop test are also included.

Copyright © 2003 by ASME
Topics: Reliability , Drops

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In