0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor

[+] Author Affiliations
Anton Moisseytsev, James J. Sienicki

Argonne National Laboratory, Argonne, IL

Paper No. ICONE14-89544, pp. 623-634; 12 pages
doi:10.1115/ICONE14-89544
From:
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

The Supercritical Carbon Dioxide (S-CO2 ) Brayton Cycle is a promising advanced alternative to the Rankine saturated steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO2 Brayton cycle coupled to an autonomous, natural circulation Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In