0

Full Content is available to subscribers

Subscribe/Learn More  >

A Transient Tire Model for Uneven Road Surface

[+] Author Affiliations
Seongho Kim, Gwanghun Gim

Hankook Tire R&D Center

Parviz E. Nikravesh

University of Arizona, Tucson, AZ

Paper No. DETC2007-34414, pp. 1941-1946; 6 pages
doi:10.1115/DETC2007-34414
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

This study presents a transient tire model for tire vibration characteristics due to uneven road surfaces. The model is composed of two parts—a static circular beam and a dynamic rigid ring. A new contact algorithm is developed based on the circular beam model, which can estimate contact pressure distribution by solving a set of linear equations. Tire vibration characteristics are then represented by combining the rigid ring model to the circular beam. Examples of contact pressure distribution and tire transient behaviors due to cleat tests are demonstrated and compared with measured data.

Copyright © 2007 by ASME
Topics: Roads , Tires

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In