Full Content is available to subscribers

Subscribe/Learn More  >

A Study of the Effect of m and n Coefficients of the Hertzian Contact Theory on Railroad Vehicle Dynamics

[+] Author Affiliations
J. P. Pascal

Pleneuf-Val-Andre, France

Khaled E. Zaazaa

ENSCO, Inc., Springfield, VA

Paper No. DETC2007-34972, pp. 1893-1901; 9 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


For the wheel/rail contact problem, the Hertz theory for two elastic bodies in contact is commonly used to determine the shape and dimensions of the contact area and the local deformation of the wheel and rail surfaces at the contact region. The shape of the contact area is assumed to be elliptical. The ratio of the contact ellipse semi-axes is equal to the ratio of two non-dimensional contact area coefficients, known as m and n coefficients. Hertz presented a table of these two coefficients, determined as a function of an angular parameter, θ. Most railroad vehicle dynamic codes use this table with online interpolation to determine the contact ellipse semi-axes. Recently, it was found that this original table may be too coarse, and that more data points are needed within the table for solving the wheel/rail contact accurately. This paper discusses the effect of the accuracy of the m and n coefficients in solving for wheel/rail contact, and demonstrates this effect with two numerical examples that show the resulting differences in the dynamic behavior of railroad vehicles dependent on this accuracy. A new table with more data points is presented that is recommended for use in railroad vehicle dynamic codes that employ the Hertzian contact for solving the wheel/rail contact interaction. This modified table was originally derived by Jean-Pierre Pascal as a part of collaborative research between the Federal Railroad Administration (FRA) and the French Ministry of Transportation.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In