0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

[+] Author Affiliations
Tatjana Jevremovic, Mathieu Hursin, Nader Satvat, John Hopkins, Shanjie Xiao, Godfree Gert

Purdue University, West Lafayette, IN

Paper No. ICONE14-89561, pp. 435-445; 11 pages
doi:10.1115/ICONE14-89561
From:
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

The AGENT (Arbitrary GEometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic submeshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Rebalancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such as three-dimensional maps of the energy-dependent mesh-wise scalar flux, reaction rate and power peaking factor. The AGENT code is in a process of an extensive and rigorous testing for various reactor types through the evaluation of its performance (ability to model any reactor geometry type), accuracy (in comparison with Monte Carlo results and other deterministic solutions or experimental data) and efficiency (computational speed that is directly determined by the mathematical and numerical solution to the iterative approach of the flux convergence). This paper outlines main aspects of the theories unified into the AGENT code formalism and demonstrates the code performance, accuracy and efficiency using few representative examples. The AGENT code is a main part of the so called virtual reactor system developed for numerical simulations of research reactors. Few illustrative examples of the web interface are briefly outlined.

Copyright © 2006 by ASME
Topics: Neutrons

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In