0

Full Content is available to subscribers

Subscribe/Learn More  >

Silicon Carbide and Uranium Oxide Based Composite Fuel Preparation Using Polymer Infiltration and Pyrolysis

[+] Author Affiliations
Abhishek K. Singh, Suraj C. Zunjarrao, Raman P. Singh

Stony Brook University, Stony Brook, NY

Paper No. ICONE14-89518, pp. 427-433; 7 pages
doi:10.1115/ICONE14-89518
From:
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

Ceramic composite pellets consisting of uranium oxide, U3 O8 , particles in a silicon carbide matrix are fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, spherical particles of depleted uranium oxide, in the form of U3 O8 , are dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900°C under a continuous flow of ultra high purity (UHP) argon. Pyrolysis of AHPCS produces near-stoichiometric amorphous SiC at 900°C. Multiple polymer infiltration and pyrolysis (PIP) cycles are required to minimize open porosity and densify the silicon carbide matrix, in order to enhance the mechanical strength of the material. Structural characterization is carried out after first pyrolysis to investigate chemical interaction between U3 O8 and SiC. The physical and mechanical properties are also quantified, and it is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix. Furthermore, the processing technique involves lower energy requirements than conventional sintering processes currently in practice.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In