0

Full Content is available to subscribers

Subscribe/Learn More  >

The SPARKy (Spring Ankle With Regenerative Kinetics) Project: Design and Analysis of a Robotic Transtibial Prosthesis With Regenerative Kinetics

[+] Author Affiliations
Joseph K. Hitt, Ryan Bellman, Matthew Holgate, Thomas G. Sugar

Arizona State University, Tempe, AZ

Kevin W. Hollander

Augspurger-Komm Engineering, Inc., Scottsdale, AZ

Paper No. DETC2007-34512, pp. 1587-1596; 10 pages
doi:10.1115/DETC2007-34512
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Even today’s most sophisticated microprocessor controlled ankle-foot prosthetic devices are passive. They lack internal elements that actively generate power, which is required during the “push-off” phase of normal able-bodied walking gait. Consequently, lower limb amputees expend 20–30% more metabolic power to walk at the same speed as able-bodied individuals. Key challenges in the development of an active ankle-foot prosthetic device are the lack of high power and energy densities in current actuator technology. Human gait requires 250W of peak power and 36 Joules of energy per step (80kg subject at 0.8Hz walking rate). Even a highly efficient motor such as the RE75 by Maxon Precision Motors, Inc. rated for 250W continuous power with an appropriate gearbox would weigh 6.6 Kg. This paper presents the first phase of the Spring Ankle with Regenerative Kinetics (SPARKy 1), a multi-phased project funded by the US Army Military Amputee Research Program, which seeks to develop a new generation of powered prosthetic devices based on the Robotic Tendon actuator, that significantly minimizes the peak power requirement of an electric motor and total system energy requirement while providing the amputee enhanced ankle motion and “push-off” power. This paper will present data to show the kinetic advantages of the Robotic Tendon and the electro-mechanical design and analysis of SPARKy 1 that will provide its users with 100% of required “push-off” power and ankle sagittal plane range of motion comparable to able-bodied gait.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In