Full Content is available to subscribers

Subscribe/Learn More  >

PWR Fuel Assembly Damping Characteristics

[+] Author Affiliations
Roger Y. Lu, David D. Steel

Westinghouse Electric Company, Columbia, SC

Paper No. ICONE14-89535, pp. 211-217; 7 pages
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME


PWR fuel assembly damping is a key parameter in seismic/LOCA safety analysis. The damping coefficients of a fuel assembly in air, still water and flowing water are significantly different. Several researchers and engineers have published their results and methods in the past. With this paper, PWR fuel assembly damping was studied and tested in air, still water, and flowing water (including flowrate and temperature variation). The damping coefficients were obtained by the initial displacement and first response method. The coefficients are also compared with published data. Several conclusions are obtained. • The damping obtained from the tests in air gives the damping component of assembly structure damping. From the comparison of the damping in air with still water the amount of viscous damping can be determined. The viscous damping component is the effect of still water on damping. The amount of viscous damping is represented by the increase in the damping ratio from air to still water at room temperature. The results show that damping in still water is approximately two times the damping in air. • The temperature effect on damping in still water is minimal. In flowing water, the results show a very slight effect of temperature, as the damping slightly decreases with an increase in temperature. This temperature effect is much smaller than the data scatter observed in most damping measurement tests under the same test conditions. • The damping is significantly affected by flowing water. For relatively low flow velocities, compared to in-core conditions, the damping coefficient is around two times the damping in still water. For intermediate to high flow velocities, all damping coefficients are 2.5 times higher than that in still water. For high velocities and large displacement, the damping coefficient can be over 3 times higher than that in still water. The flow velocity appears to be acting on the system by suppressing the motion of the assembly. Additional damping due to flowing water is called hydraulic damping, which is generated by hydraulic force. When a fuel assembly vibrates in flowing water, the assembly is trying to change the flow direction and momentum, but the flow mass wants to retain its pure axial direction which suppresses the motion of the assembly.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In