Full Content is available to subscribers

Subscribe/Learn More  >

Pressure and Thermal Stress Analyses of a Generation IV Reactor System, Mini-Channel Heat Exchanger

[+] Author Affiliations
Bong Yoo, Yun-Jae Kim

Korea University, Seoul, Korea

Ronald F. Kulak

RFK Engineering Mechanics Consultants, Naperville, IL

Paper No. ICONE14-89385, pp. 167-171; 5 pages
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME


An advanced power conversion system incorporating a Supercritical Carbon Dioxide (S-CO2 ) Brayton Cycle for Liquid Metal-Cooled Fast Reactors, can provide much improved cycle efficiency relative to a traditional Rankine cycle. Because of this, current plans for Generation IV reactor systems—like the Liquid Metal-Cooled Fast Reactor—include the use of the S-CO2 Brayton Cycle in the development of a power conversion system. However, a structural issue is raised with the use of a mini-channel heat exchanger because large temperature and pressure differences occur along the passages of the mini-channels during normal and transient operating conditions. The design parameters of the heat exchanger during normal operating conditions (i.e., steady state) are pressures and temperatures at the inlet and outlet of the hot and cold channels, and the average heat transfer coefficients within the mini-channels. In this paper, results are presented from preliminary uncoupled thermal and stress analyses of the heat exchanger based on very simple finite element models and the heat exchanger design parameters. Temperature distributions along the passage ways of the mini-channels are calculated. The stresses resulting from both the pressure load and the thermal load are compared with the ASME Section VIII design requirement. The structural integrity of the simplified heat exchanger model—during normal operating conditions of the S-CO2 Brayton Cycle—is evaluated.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In