0

Full Content is available to subscribers

Subscribe/Learn More  >

On Selecting Assumed Modes in a Controlled Articulated Flexible Multibody Dynamics System

[+] Author Affiliations
Theodore G. Mordfin

Computer Sciences Corporation Advanced Marine Center, Washington, DC

Sivakumar Tadikonda

Constellation Software Engineering, Lanham-Seabrook, MD

Paper No. DETC2007-35749, pp. 1151-1160; 10 pages
doi:10.1115/DETC2007-35749
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

The modeling and simulation of controlled-articulation flexible multibody dynamic systems often involves the use of approximating functions, or assumed modes, to represent the structural characteristics of the constituent component bodies. However, clear and complete guidance on appropriate component body modeling techniques is lacking. As a result, researchers and applications engineers encounter severe and unexplained numerical problems when simulating such systems. Earlier studies demonstrated these problems, explained their causes, and developed modeling guidelines from the perspective of accuracy, robustness, and simulation efficiency. In this study, the guidelines are tested and confirmed for a controlled-articulation flexible multibody dynamic system. In support of this effort, exact closed-form and numerical solutions are developed for the small elastic motions of a planar, flexible, two-link system in which each link is represented by an Euler-Bernoulli bar in transverse vibration. The inboard link is pinned to the ground, and the outboard link is pinned to the outboard end of the first link in an arbitrary configuration. Articulation is controlled by proportional and proportional/derivative feedback control laws. The exact solutions are “truth models” for the linear characteristics of an analogous non-linear large articulation model in which link deformations are represented by assumed modes. Using a linearized version of the non-linear large-articulation model as an assumed modes testbed, the modeling guidelines are tested against the exact solutions. The numerical results conform with expectation, and the efficacy of the guidelines is successfully confirmed.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In