0

Full Content is available to subscribers

Subscribe/Learn More  >

Fully Comprehensive Geometrically Non-Linear Analysis of Anisotropic Composite Beam Systems

[+] Author Affiliations
Hemaraju Pollayi, Dineshkumar Harursampath

Indian Institute of Science - Bangalore, Bangalore, KA, India

Paper No. DETC2007-35355, pp. 1141-1149; 9 pages
doi:10.1115/DETC2007-35355
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

This paper describes a comprehensive approach to analyse anisotropic composite beams. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. Usually cross-sectional analyses are linear, but there are a few exceptions, like the “trapeze effect” and “Brazier effect”. The two sub-tasks of this work (viz. non-linear analysis of the beam cross-section and non-linear beam analysis) are to be accomplished on a single platform using object-oriented framework. First, we perform a non-linear numerical cross-sectional analysis, based on the Variational-Asymptotic Method (VAM). It is capable of treating cross-sections of arbitrary geometry and generally anisotropic material. Second, we formulate the comprehensively non-linear 1-D governing equations along the beam reference line using the mixed variational method and the expressions for non-linear stiffness matrix. The dynamic response of non-linear, flexible multibody systems is thus simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear systems. Finally, local 3-D stress, strain and displacement fields for representative sections in the component beams are recovered, based on the stress resultants from a 1-D global beam analysis. Results from this analysis are compared with those available in the literature, both theoretical and experimental, and focus on the behavior of multi-body systems involving members with elastic couplings.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In