0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Accuracy and Computational Costs of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems

[+] Author Affiliations
Markus Dibold

Linz Center of Mechatronics GmbH, Linz, Austria

Johannes Gerstmayr, Hans Irschik

Johannes Kepler University of Linz, Linz, Austria

Paper No. DETC2007-34756, pp. 1071-1080; 10 pages
doi:10.1115/DETC2007-34756
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

In the present paper, a comparison of the absolute nodal coordinate formulation (ANCF) and the floating frame of reference formulation (FFRF) is performed for standard static and dynamic problems, both in the small and large deformation regime. Special emphasis is laid on the converged solutions and a comparison to analytical and numerical solutions from the literature. In addition to the work of previous authors, the computational performance of both formulations is studied for the dynamic case, where detailed information is provided concerning the different effects influencing the single parts of the computation time. In case of the ANCF finite element, a planar formulation based on the Bernoulli-Euler theory is utilized, consisting of two position and two slope coordinates in each node only. In the FFRF beam finite element, the displacements are described by the rigid body motion and a small superimposed transverse deflection. The latter is described by means of two static modes for the rotation at the boundary and a user-defined number of eigenmodes of the clamped-clamped beam. In numerical studies, the accuracy and computational costs of the two formulations are compared for a cantilever beam, a pendulum and a slider-crank mechanism. It turns out that both formulations have comparable performance and that the choice of the optimal formulation depends on the problem configuration. Recent claims in the literature that the ANCF would have deficiencies compared to the FFRF thus can be refuted.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In