Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Constitutive Models and the Finite Element Absolute Nodal Coordinate Formulation

[+] Author Affiliations
Luis G. Maqueda, Ahmed A. Shabana

University of Illinois at Chicago, Chicago, IL

Paper No. DETC2007-34521, pp. 1033-1037; 5 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


In this investigation, the use of three different nonlinear constitutive models based on the hyper-elasticity theory with the absolute nodal coordinate formulation is considered. These three nonlinear constitutive models are based on the Neo-Hookean constitutive law for compressible materials, the Neo-Hookean constitutive law for incompressible materials, and the Mooney-Rivlin constitutive law in which the material is assumed to be incompressible. These models, which allow capturing Poisson modes, are suitable for many materials and applications, including rubber-like materials and biological tissues which are governed by nonlinear elastic behavior and are considered incompressible or nearly incompressible. Numerical examples that demonstrate the implementation of these nonlinear constitutive models in the absolute nodal coordinate formulation are presented. The results obtained using the nonlinear and linear constitutive models are compared in this study. The results show that when linear constitutive models are used in the large deformation analysis, singular configurations are encountered and basic formulas such as Nanson’s formula are no longer valid. These singular deformation configurations are not encountered when the nonlinear constitutive models are used.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In