Full Content is available to subscribers

Subscribe/Learn More  >

Curvature-Based Finite Element Method for Euler-Bernoulli Beams

[+] Author Affiliations
Y. L. Kuo

Industrial Technology Research Institute, Hsinchu, Taiwan

W. L. Cleghorn

University of Toronto, Toronto, ON, Canada

Paper No. DETC2007-34213, pp. 1001-1015; 15 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


This paper presents a new method called the curvature-based finite element method to solve Euler-Bernoulli beam problems. An approximated curvature distribution is selected first, and then the approximated transverse displacement is determined by double integrations. Four numerical examples demonstrate the validity of the method, and the results show that the errors are smaller than those generated by a conventional method, the displacement-based finite element method, for comparison based on the same number of degrees of freedom.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In