Full Content is available to subscribers

Subscribe/Learn More  >

Experimentally-Tuned Mathematical Model for Drillstring Vibrations

[+] Author Affiliations
Y. A. Khulief, F. A. Al-Sulaiman

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Paper No. DETC2007-35057, pp. 961-968; 8 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


Field experience manifests that drillstring vibration is one of the major causes for a deteriorated drilling performance. It is crucial to understand the complex vibrational mechanisms experienced by a drilling system in order to better control its functional operation and improve its performance. Experimental studies of drillstring dynamics are essential to complement the theoretical studies, and to alleviate the complexity of such dynamic models. This paper presents an experimental investigation using a specially designed drilling test rig. The test rig can simulate the drillstring vibrational response due to various excitation mechanisms, which include stick-slip, well-borehole contact, and drilling fluid interaction. The test rig is driven by a variable speed motor which allows for testing different drilling speeds, while a magnetic tension brake is used to simulated stick-slip. In addition, a shaker is employed to excite the drillstring axially in order to simulate the weight-on-bit (WOB). The drillstring is instrumented for vibration measurements. The experimentally identified parameters are used to refine the finite element multibody model of the drillstring, which was derived earlier by the investigators [1]. Comparisons with published data demonstrate the reliability of the developed scheme for prediction of drillstring vibrations.

Copyright © 2007 by ASME
Topics: Vibration



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In