Full Content is available to subscribers

Subscribe/Learn More  >

Discrete Mechanics and Optimal Control for Constrained Multibody Dynamics

[+] Author Affiliations
Sigrid Leyendecker, Jerrold E. Marsden, Michael Ortiz

California Institute of Technology, Pasadena, CA

Sina Ober-Blöbaum

University of Paderborn, Paderborn, Germany

Paper No. DETC2007-34574, pp. 623-632; 10 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


This paper formulates the dynamical equations of mechanics subject to holonomic constraints in terms of the states and controls using a constrained version of the Lagrange-d’Alembert principle. Based on a discrete version of this principle, a structure preserving time-stepping scheme is derived. It is shown that this respect for the mechanical structure (such as a reliable computation of the energy and momentum budget, without numerical dissipation) is retained when the system is reduced to its minimal dimension by the discrete null space method. Together with initial and final conditions on the configuration and conjugate momentum, the reduced time-stepping equations serve as nonlinear equality constraints for the minimisation of a given cost functional. The algorithm yields a sequence of discrete configurations together with a sequence of actuating forces, optimally guiding the system from the initial to the desired final state. The resulting discrete optimal control algorithm is shown to have excellent energy and momentum properties, which are illustrated by two specific examples, namely reorientation and repositioning of a rigid body subject to external forces and the reorientation of a rigid body with internal momentum wheels.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In