Full Content is available to subscribers

Subscribe/Learn More  >

Automated Fault Tree Analysis for Engineering Design Optimization

[+] Author Affiliations
Tiefu Shao, Zongfang Lin, Sundar Krishnamurty, Ian R. Grosse, Leon J. Osterweil

University of Massachusetts - Amherst, Amherst, MA

Paper No. DETC2007-35496, pp. 589-598; 10 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


This paper presents an automated fault tree analysis for engineering design optimization process. Specifically, a novel approach is presented in which Little-JIL, a process programming language, is applied to create a process model of engineering optimization. The process model uses a graphical language in the form of easy-to-understand block diagrams for defining processes that coordinate the activities of autonomous agents and their use of resources during the performance of a task. The use of Little-JIL facilitates agent coordination in the design optimization process and helps to model the order of and the communications between units of sub-processes. The resulting process model is easy to debug and is rigorous for simulation and formal reasoning in engineering design optimization. Furthermore, it enables the development of a clear and precise design optimization process model at different levels of granularity as perhaps preferred by the user. Moreover, since the process model allows for generation of fault trees automatically, it can be expected to be less errorprone than manually generated ones. A case study is shown to demonstrate the effectiveness and efficiency of the automated fault tree approach to design optimization and its usefulness in engineering decision making and in improving reliability of engineering design process.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In