0

Full Content is available to subscribers

Subscribe/Learn More  >

A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics

[+] Author Affiliations
Naresh Khude, Dan Negrut

University of Wisconsin at Madison, Madison, WI

Laurent O. Jay

University of Iowa, Iowa City, IA

Andrei Schaffer

MSC.Software, Ann Arbor, MI

Paper No. DETC2007-35666, pp. 149-160; 12 pages
doi:10.1115/DETC2007-35666
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

The premise of this work is that real-life mechanical systems limit the use of high order integration formulas due to the presence in the associated models of friction and contact/impact elements. In such cases producing a numerical solution necessarily relies on low order integration formulas. The resulting algorithms are generally robust and expeditious; their major drawback remains that they typically require small integration step-sizes in order to meet a user prescribed accuracy. This paper looks at three low order numerical integration formulas: Newmark, HHT, and BDF of order two. These formulas are used in two contexts. A first set of three methods is obtained by considering a direct index-3 discretization approach that solves for the equations of motion and imposes the position kinematic constraints. The second batch of three additional methods draws on the HHT and BDF integration formulas and considers in addition to the equations of motion both the position and velocity kinematic constraint equations. The first objective of this paper is to review the theoretical results available in the literature regarding the stability and convergence properties of these low order methods when applied in the context of multibody dynamics simulation. When no theoretical results are available, numerical experiments are carried out to gauge order behavior. The second objective is to perform a set of numerical experiments to compare these six methods in terms of several metrics: (a) efficiency, (b) velocity constraint drift, and (c) energy preservation. A set of simple mechanical systems is used for this purpose: a double pendulum, a slider crank with rigid bodies, and a slider crank with a flexible body represented in the floating frame of reference formulation.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In