Full Content is available to subscribers

Subscribe/Learn More  >

A Systematic and General Approach to Kinematic Position Errors Due to Manufacturing and Assemble Tolerances

[+] Author Affiliations
P. Flores, J. C. P. Claro

Universidade do Minho - Campus de Azurém, Guimarães, Portugal

Paper No. DETC2007-34198, pp. 43-49; 7 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4806-X | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


A systematic and general methodology for kinematic position errors analysis of multibody systems is investigated throughout this work, taking into account the influence of the manufacturing and assemble tolerances on the performance of planar mechanisms. The generalized Cartesian coordinates are used to mathematically formulate kinematic constraints and equations of motion of the multibody systems. Thus, the systems are defined by set of generalized coordinates, which represents the instantaneous positions of all bodies, together with a set of generalized dimensional parameters that defines the functional dimensions of the system. These generalized dimensional parameters take into account the tolerances associated with the lengths, fixed angles, diameters and distance between centers, among others. This paper highlights the relation among kinematic constraints, dimensional parameters and output kinematic parameters. Based on the theory of dimensional tolerances, the variation of the geometrical dimensions is regarded as a tolerance grade with an interval associated with each dimension and, consequently, a kinematic amplitude variation for the bodies’ position. The methodology presented is implemented in a computational code developed for kinematic analysis of general multibody systems, capable of automatically generating and solving the equations of motion for general multibody systems. Finally, a slider-crank mechanism is used as a numerical example to demonstrate the accuracy of the presented methodology, as well as to discuss the main assumptions and procedures adopted in this work.

Copyright © 2007 by ASME
Topics: Manufacturing , Errors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In