0

Full Content is available to subscribers

Subscribe/Learn More  >

Variable Displacement Vane Pump for Turbine Engine Applications

[+] Author Affiliations
Paul J. Paluszewski, Mihir C. Desai

Goodrich Engine Control Systems

Richard C. Millar

US Navy, Patuxent River, MD

Paper No. GT2007-27948, pp. 777-784; 8 pages
doi:10.1115/GT2007-27948
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2007
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4790-X | eISBN: 0-7918-3796-3
  • Copyright © 2007 by Goodrich Corporation

abstract

Increasing airframe fueldraulic system pressures and flow requirements have put severe demands on fuel system thermal management techniques. Heat loads from a variety of sources are constantly increasing the temperatures at which modern aircraft fuel systems are required to operate. Variable Displacement Vane Pump (VDVP) based systems are a solution to thermally constrained high pressure turbine engine fuel supply and fueldraulic actuation systems (i.e. variable engine nozzle and/or variable engine geometry). VDVPs offer several benefits including exceptional thermal efficiency, fast response and contamination resistance comparable to legacy systems. Utilizing a simple pumping design in conjunction with recent advances in material and bearing technology, the VDVP has demonstrated high thermal efficiency for flow turndowns up to 100:1 in a range of displacements from 5 gpm (small engines) to 120 gpm (large turbofans). Based on testing to date, VDVP systems also have potential for high-pressure fueldraulics and are capable of cavitation-free operation for extended periods of time. The VDVP is easy to operate in flow or pressure control loops and can easily meet the slew requirements of modern engines. With over 15000 hours of testing under various pressure, flow and fuel temperature conditions this technology is approaching readiness for integrated test with some challenging gas turbine engine applications. The intent of this paper is to share the system level thermal management benefits, basic design principles, test data, and potential applications of the Goodrich VDVP.

Copyright © 2007 by Goodrich Corporation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In