Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Irradiated Materials

[+] Author Affiliations
B. K. Dutta, P. V. Durgaprasad, A. K. Pawar, H. S. Kushwaha, S. Banerjee

Bhabha Atomic Research Centre, Mumbai, India

Paper No. ICONE14-89685, pp. 645-652; 8 pages
  • 14th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance and Life Cycle; Component Reliability and Materials Issues; Codes, Standards, Licensing and Regulatory Issues; Fuel Cycle and High Level Waste Management
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4242-8 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME


Irradiation of materials by energetic particles causes significant degradation of the mechanical properties, most notably an increased yield stress and decrease ductility, thus limiting lifetime of materials used in nuclear reactors. The microstructure of irradiated materials evolves over a wide range of length and time scales, making radiation damage and inherently multi-scale phenomenon. At atomic length scale, the principal sources of radiation damage are the primary knock-on atoms that recoil under collision from energetic particles such as neutrons or ions. These knock-on atoms in turn produce vacancies and self-interstitial atoms, and stacking fault tetrahedra. At higher length scale, these defect clusters form loops around existing dislocations, leading to their decoration and immobilization, which ultimately leads to radiation hardening in most of the materials. All these defects finally effect the macroscopic mechanical and other properties. An attempt is made to understand these phenomena using molecular dynamics studies and discrete dislocation dynamics modelling.

Copyright © 2006 by ASME
Topics: Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In