0

Full Content is available to subscribers

Subscribe/Learn More  >

A Review of the Effects of Elevated Temperature on Concrete Materials and Structures

[+] Author Affiliations
D. J. Naus

Oak Ridge National Laboratory, Oak Ridge, TN

H. L. Graves, III

U.S. Nuclear Regulatory Commission, Washington, D.C.

Paper No. ICONE14-89631, pp. 615-624; 10 pages
doi:10.1115/ICONE14-89631
From:
  • 14th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance and Life Cycle; Component Reliability and Materials Issues; Codes, Standards, Licensing and Regulatory Issues; Fuel Cycle and High Level Waste Management
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4242-8 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

Concrete’s properties are more complex than those of most materials because not only is concrete a composite material whose constituents have different properties, but its properties depend upon moisture and porosity. Exposure of concrete to elevated temperature affects its mechanical and physical properties. Elements could distort and displace, and, under certain conditions, the concrete surfaces could spall due to the buildup of steam pressure. Because thermally-induced dimensional changes, loss of structural integrity, and release of moisture and gases resulting from the migration of free water could adversely affect plant operations and safety, a complete understanding of the behavior of concrete under long-term elevated-temperature exposure as well as both during and after a thermal excursion resulting from a postulated design-basis accident condition is essential for reliable design evaluations and assessments of nuclear power plant structures. As the properties of concrete change with respect to time and the environment to which it is exposed, an assessment of the effects of concrete aging is also important in performing safety evaluations. The effects of elevated temperature on Portland cement concretes and constituent materials are summarized, design codes and standards identified, and considerations for elevated temperature service noted.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In