0

Full Content is available to subscribers

Subscribe/Learn More  >

Long-Term Degradation of Ceramics for Gas Turbine Applications

[+] Author Affiliations
Mark van Roode

Solar Turbines Incorporated, San Diego, CA

Mattison K. Ferber

Ceramatec Inc., Salt Lake City, UT

Paper No. GT2007-27956, pp. 305-321; 17 pages
doi:10.1115/GT2007-27956
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2007
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4790-X | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

A study has been conducted to establish the effect of long-term (30,000+ hours) properties of monolithic ceramics (Si3 N49 SiC), SiC/SiC and oxide/oxide ceramic matrix composites (CMCs), and protective coatings on component life in gas turbine engines with pressure ratios (PRs) ranging from 5:1 to 30:1. A model has been presented that shows the interaction between two major long-term degradation modes of ceramics, creep and degradation from water vapor attack in the ceramic hot section. Water vapor attack is the most severe mode overshadowing creep for long-term (∼30,000 hours) gas turbine operation, and its impact on component durability becomes more severe as PR increases. Components in the turbine hot section, downstream from the combustor (blades, integral turbine rotors, nozzles), fabricated from Si3 N4 without protective coatings, have a temperature limitation of ∼800°C for gas turbines with PR ranging from 5:1 to 30:1. These ceramic components afford little, if any, advantage over metallic components for improving gas turbine performance. The application of a BSAS-type Environmental Barrier Coating (EBC) would improve temperature capability of turbine nozzles and rotating parts to ∼1100–1200°C. For small low-PR (5:1) engines, thick (∼10 mm) uncoated monolithic silicon-based combustor liners can be used up to ∼1360°C and thinner (∼3 mm) SiC/SiC CMCs up to ∼1100°C. These temperatures are reduced for higher-PR engines. The incorporation of a BSAS-type EBC improves temperature capability of silicon-based ceramic combustor liners. Oxide/oxide CMCs with protective coatings have a predicted temperature capability of ∼1220-∼1380°C over the range of PR range studied. They can be used as structural materials for combustor liners and other stationary turbine hot section components. As PR increases the durability of coated oxide/oxide CMCs improves relative to that of silicon-based monolithics and CMCs. As expected, ceramic component durability increases for shorter component design lives, making these materials more acceptable for shorter-term applications, such as automotive transportation (∼3,000 hours/150,000 km).

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In