0

Full Content is available to subscribers

Subscribe/Learn More  >

Helicopter IRS Engine Integration for the “FIRST” Technology Demonstrator Programme

[+] Author Affiliations
Tony Ponton, Gordon Warnes

Rolls-Royce plc, Bristol, UK

Paper No. GT2007-27408, pp. 67-80; 14 pages
doi:10.1115/GT2007-27408
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2007
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4790-X | eISBN: 0-7918-3796-3
  • Copyright © 2007 by Rolls-Royce Plc

abstract

The balanced protection of military assets presents a major challenge to military rotorcraft customers. The proliferation of sophisticated threat systems (including simpler weapons cued by imaging hardware) has highlighted the need for signature suppression systems to be considered as an integral part of rotorcraft design. Suppression of emissions at source offers multiple synergies with other aircraft systems including aerothermal optimisation (minimised pressure losses & highest utility of air flows), enhanced efficiency of other defensive aids equipment, and increased operational effectiveness. The optimisation of the benefits of IR suppression to the helicopter platform as a whole is closely tied into the design of the engine and exhaust system. The achievement of a successful design thus requires the close cooperation of the airframe and engine manufacturers and the availability of the necessary design and assessment tools. This paper is intended to illustrate the many aspects of Infra-Red Suppressor (IRS) design and the tools required to enable successful IRS optimisation and airframe integration. The development of a generic Future Infra-Red Suppressor Technology (FIRST) and the supporting design & analysis capability are described. The FIRST technology development programme has yielded a generic, scaleable, retrofit helicopter IRS that balances aircraft signatures (multi-band IR & RADAR) and installation penalties (such as engine performance and operating costs) to yield a substantial increase in aircraft survivability when compared with existing IRS designs.

Copyright © 2007 by Rolls-Royce Plc
Topics: Engines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In