Full Content is available to subscribers

Subscribe/Learn More  >

Friction Reduction Due to Lubrication Oil Changes in a Lean-Burn 4-Stroke Natural Gas Engine: Experimental Results

[+] Author Affiliations
Kris Quillen, Rudolph H. Stanglmaier

Colorado State University, Ft. Collins, CO

Victor Wong

Massachusetts Institute of Technology, Cambridge, MA

Ed Reinbold, Rick Donahue

Waukesha Engine Dresser, Waukesha, WI

Kathleen Tellier, Vincent M. Carey

ExxonMobil Research and Engineering, Paulsboro, NJ

Paper No. JRC/ICE2007-40128, pp. 523-530; 8 pages
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME


A project to reduce frictional losses from natural gas engines is currently being carried out by a collaborative team from Waukesha Engine Dresser, Massachusetts Institute of Technology (MIT), Colorado State University (CSU), and ExxonMobil. This project is part of the Advanced Reciprocating Engine System (ARES) program led by the US Department of Energy. Changes in lubrication oil have been identified as a way to potentially help meet the ARES goal of developing a natural gas engine with 50% brake thermal efficiency. Previous papers have discussed the computational tools used to evaluate piston-ring/cylinder friction and described the effects of changing various lubrication oil parameters on engine friction. These computational tools were used to predict the effects of changing lubrication oil of a Waukesha VGF 18-liter engine, and this paper presents the experimental results obtained on the engine test bed. Measured reductions in friction mean effective pressure (FMEP) were observed with lower viscosity lubrication oils. Test oil LEF-H (20W) resulted in a ∼ 1.9% improvement in mechanical efficiency (ηmech ) and a ∼ 16.5% reduction in FMEP vs. a commercial reference 40W oil. This improvement is a significant step in reaching the ARES goals.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In