Full Content is available to subscribers

Subscribe/Learn More  >

A Study on Adaptability of the Engine Control Module of an Existing Heavy Duty Diesel Engine to Optimize the Engine Performance With F-T Diesel Fuel

[+] Author Affiliations
Praveen Kandulapati, Chuen-Sen Lin, Dennis Witmer, Thomas Johnson, Jack Schmid, Tristan Kenny

University of Alaska at Fairbanks, Fairbanks, AK

Paper No. JRC/ICE2007-40076, pp. 463-469; 7 pages
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME


Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In