Full Content is available to subscribers

Subscribe/Learn More  >

Exhaust Emissions From a 2,850 kW EMD SD60M Locomotive Equipped With a Diesel Oxidation Catalyst

[+] Author Affiliations
Dustin T. Osborne, Steven G. Fritz

Southwest Research Institute, San Antonio, TX

Mike Iden

Union Pacific Railroad Company, Omaha, NE

Don Newburry

Miratech Corporation, Tulsa, OK

Paper No. JRC/ICE2007-40060, pp. 441-449; 9 pages
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME


This paper describes the test results of a program to apply an experimental diesel oxidation catalyst (DOC) to a 2,850 kW freight locomotive. Locomotive emissions and fuel consumption measurements were performed on an Electro-Motive Diesel (EMD) model SD60M locomotive, owned by Union Pacific Railroad company, that had been recently rebuilt to EPA Tier 0 exhaust emission certification levels. Emission testing was performed at the Southwest Research Institute (SwRI) Locomotive Exhaust Emissions Test Center in San Antonio, Texas. US EPA-regulated emission levels of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx ), and participate (PM) were measured using U.S. EPA locomotive certification test procedures in three configurations; first a baseline with a relatively high sulfur diesel fuel (2,913 ppm sulfur) meeting EPA locomotive certification test specifications, and another baseline using ultra-low sulfur diesel fuel (ULDS), and finally a test using ULSD after the installation of a diesel oxidation catalyst designed and manufactured by MIRATECH Corporation (patent pending). The DOC was applied pre-turbine, within the exhaust manifold due to both space and exhaust temperature considerations. This paper describes the design of the DOC-equipped exhaust manifold, and reports the changes in the regulated exhaust emission levels between the baseline tests and after installation of the DOC. Also described is a locomotive on-board monitoring system used to monitor DOC performance during ongoing revenue service field testing.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In