0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Crash Energy Management for Light Rail Vehicles

[+] Author Affiliations
Steven W. Kirkpatrick, Robert A. MacNeill

Applied Research Associates, Inc., Mountain View, CA

Glenn Gough, Emil Hice

Siemens Transportation Systems, Inc., Sacramento, CA

Paper No. JRC/ICE2007-40114, pp. 215-223; 9 pages
doi:10.1115/JRC/ICE2007-40114
From:
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME

abstract

Rail vehicle safety standards for the United States have historically placed emphasis on static structural strength requirements to ensure safety. The primary requirements to ensure crash safety of light rail vehicles were static load cases including car body buff loads, collision post loads, corner post loads, etc. More recent developments for light rail vehicles in the United States have included crash energy management design methodologies. This is consistent with the trend in other modes of transportation applying modern crashworthiness engineering. The challenges of incorporating crash energy management into light rail vehicles are the lack of crashworthiness standards for the light rail industry, the introduction of new design methodologies, and the concerns of compatibility of new and older equipment. This issue of compatibility in vehicle designs would often inhibit introduction of innovations and potential safety improvements within an existing light rail transit system. However, there are ongoing efforts to address each of these challenges. The American Society of Mechanical Engineers has a committee working on the development of a new safety standard for light rail vehicles. Light rail vehicle manufacturers are increasingly using modern crashworthiness design principles. In addition, modern crash analysis methodologies allow for the assessment of vehicle incompatibilities in the design process. In this paper, the developments of crash energy management strategies in the light rail industry are discussed. These include the ongoing standards development efforts and the application of crash energy management principles in recent light rail vehicle design efforts. Examples will be provided for the use of crash analyses in a vehicle design. The interaction of the crash and static analyses will be discussed and examples of both compatible and incompatible collision scenarios will be presented.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In