0

Full Content is available to subscribers

Subscribe/Learn More  >

A Multibody Dynamics Approach to Friction Wedge Modeling for Freight Train Suspensions

[+] Author Affiliations
J. Steets, B. J. Chan, C. Sandu

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. JRC/ICE2007-40050, pp. 61-69; 9 pages
doi:10.1115/JRC/ICE2007-40050
From:
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME

abstract

This paper presents an effort to use multi-body dynamics with unilateral contact to model the friction wedge interaction with the bolster and the side frame. The new friction wedge model is a 3D, dynamic, stand-alone model of a bolster-friction wedge-side frame assembly. It allows the wedge four degrees of freedom: vertical displacement, longitudinal (between the bolster and the side frame) displacement, toe-in and toe-out, and yaw (rotation about the vertical axis). The dedicated train modeling software NUCARS® has been used to run simulations with similar inputs and to compare — when possible — the results with those obtained from the new stand-alone MATLAB friction wedge model. The stand-alone model shows improvement in capturing the transient dynamics of the wedge better. Also, it can predict not only normal forces going into the frame and bolster, but also use the associated moments to enhance model behavior. Significant simulation results are presented and the main differences between the current NUCARS® model and the new stand-alone MATLAB models are highlighted.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In