Full Content is available to subscribers

Subscribe/Learn More  >

Rail Car Crashworthiness Design and Testing: Lessons Learned

[+] Author Affiliations
R. Sarunac

Booz Allen Hamilton, Washington, DC

Paper No. JRC/ICE2007-40016, pp. 29-35; 7 pages
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference
  • Pueblo, Colorado, USA, March 13–16, 2007
  • Conference Sponsors: Rail Transportation Division and Internal Combustion Engine Division
  • ISBN: 0-7918-4787-X | eISBN: 0-7918-3795-5
  • Copyright © 2007 by ASME


Following National Transportation Safety Board (NTSB) recommendations and directions from early 1996, the Washington Metropolitan Transit Authority (WMATA) has worked to provide the latest crashworthiness and passenger safety requirements for its new car procurements. Taking advantage of recent developments in the field of vehicle crashworthiness, new technical requirements were developed and implemented for the 5000 and 6000 series vehicles. To date, WMATA is the first transit authority in the U.S. to require a dynamic sled test per the APTA SS-C&S-016-SS Standard, and the second (after the New York City Transit Authority) to run full-scale vehicle crash tests. Previously, the strength-based philosophy was used to ensure some level of rail vehicle crashworthiness. However, WMATA is now implementing a strength-based crashworthiness approach, augmented with “energy-based” requirements. Should a collision occur, the Authority’s ultimate goal is to reduce passenger deceleration rates during a collision, while at the same time controlling the absorption of collision energy in a manner that minimizes loss of space in the occupied volume of the vehicle. The passenger survivability measure using maximum acceleration has been supplemented by introducing the duration of the acceleration as an additional criteria following the Head Injury Criteria (HIC) and Abbreviated Injury Scale (AIS) approaches developed for the automotive industry. WMATA’s crashworthiness requirements now include sustaining a hard coupling without any damage to the body or coupler (except emergency release), and head-on collision of two eight-car trains with specified passenger loads (one train stationary with brakes applied) with no permanent deformation of the passenger compartment and with the acceleration, level and duration not to exceed the specified HIC. The implementation of an “energy-based” crashworthiness approach was divided into several logical steps/stages. During the design process, several modifications were introduced to optimize crashworthiness and to ensure structural compatibility with the existing fleet. The design was verified by implementing full-scale testing, and potential passenger injuries were assessed by using instrumented anthropomorphic test devices (ATDs), and measuring the forces and accelerations acting on these ATDs during the test.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In