Full Content is available to subscribers

Subscribe/Learn More  >

Test Evolution and Oil-Free Engine Experience of a High Temperature Foil Air Bearing Coating

[+] Author Affiliations
Daniel Lubell

Capstone Turbine Corporation, Chatsworth, CA

Christopher DellaCorte, Malcolm Stanford

NASA Glenn Research Center, Cleveland, OH

Paper No. GT2006-90572, pp. 1245-1249; 5 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4240-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


During the start-up and shut-down of a turbomachine supported on compliant foil bearings, before the bearings have full development of the hydrodynamic gas film, sliding occurs between the rotor and the bearing foils. Traditional solid lubricants (e.g., graphite, Teflon®) readily solve this problem at low temperature. High temperature operation, however, has been a key obstacle. Without a suitable high temperature coating, foil air bearing use is limited to about 300°C (570°F). In oil-free gas turbines, a hot section bearing presents a very aggressive environment for these coatings. A NASA developed coating, PS304, represents one tribological approach to this challenge. In this paper, the use of PS304 as a rotor coating operating against a hot foil gas bearing is reviewed and discussed. During the course of several long term, high cycle, engine tests, which included two coating related failures, the PS304 technology evolved and improved. For instance, a post deposition thermal treatment to improve dimensional stability, and improvements to the deposition process to enhance strength resulted from the engine evaluations. Largely because of this work, the bearing/coating combination has been successfully demonstrated at over 500°C (930°F) in an oil-free gas turbine for over 2500 hours and 2900 start-stop cycles without damage or loss of performance when properly applied. Ongoing testing at Glenn Research Center as part of a long term program is over 3500 hours and 150 cycles.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In