0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Analysis of a Large Industrial Turbo-Compressor Including Finite Element Substructure Modeling

[+] Author Affiliations
J. Jeffrey Moore

Southwest Research Institute, San Antonio, TX

Giuseppe Vannini, Massimo Camatti, Paolo Bianchi

GE Oil and Gas – Nuovo Pignone, Florence, Italy

Paper No. GT2006-90481, pp. 1233-1243; 11 pages
doi:10.1115/GT2006-90481
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4240-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

A rotordynamic analysis of a large turbo-compressor that models both the casing and supports along with the rotor-bearing system was performed. A three-dimensional (3-D) finite element model of the casing captures the intricate details of the casing and support structure. Two approaches are presented, including development of transfer functions of the casing and foundation, as well as a fully coupled rotor-casing-foundation model. The effect of bearing support compliance is captured, as well as the influence of casing modes on the rotor response. The first approach generates frequency response functions (FRF’s) from the finite element case model at the bearing support locations. A high-order polynomial in numerator-denominator transfer function format is generated from a curve-fit of the FRF. These transfer functions are then incorporated into the rotordynamics model. The second approach is a fully coupled rotor and casing model that is solved together. An unbalance response calculation is performed in both cases to predict the resulting rotor critical speeds and response of the casing modes. The effect of the compressor case and supports caused the second critical speed to drop to a value close to the operating speed and not compliant with API 617 7th edition requirements. A combination of rotor, journal bearing, casing, and support modifications resulted in a satisfactory and API compliant solution. The results of the fully coupled model validated the transfer function approach.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In