Full Content is available to subscribers

Subscribe/Learn More  >

Processing and Characterization of Carbon Fiber/Epoxy Composites Reinforced With Graphite Nanoplatelets

[+] Author Affiliations
J. Y. Chen, J. Cho, I. M. Daniel

Northwestern University, Evanston, IL

Paper No. IMECE2007-41212, pp. 1111-1120; 10 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 11: Micro and Nano Systems, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4305-X | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


The epoxy matrix in carbon fiber/epoxy composites was modified with graphite nanoplatelets to improve the matrix dominated mechanical properties of the composite. A prepreg-autoclave process was developed for preparation of nanoparticle-reinforced fiber composites. The in-plane shear modulus and longitudinal compressive strength were enhanced. The compressive strength of the composite was increased by 43% and 44%, and the in-plane shear modulus was improved by 7% and 15% for 3 wt% and 5 wt% of nanoparticle loadings, respectively. This mechanical enhancement is mainly attributed to the reinforcement of matrix phase by the nanoparticles. However, the substantially improved compressive strength is attributed in large part to the reduced waviness of the fibers in the uni-weave perform caused by the nanoparticles between layers.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In