Full Content is available to subscribers

Subscribe/Learn More  >

Mistuning Phenomena on Bladed Disk: Industrial Methods and Applications

[+] Author Affiliations
Jean-Pierre Lombard, Jérôme Dupeux, Christian Dupont, Francois Garcin, Stéphane Baumhauer

Snecma, Moissy Cramayel, France

Paper No. GT2006-90205, pp. 809-819; 11 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4240-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


This paper deals with the methods used at Snecma (SAFRAN Group) to simulate the real mistuned dynamic behavior of bladed disks. Many applications of the method on industrial cases are also presented. The dissymmetry of a real bladed disk, which is mainly generated by small deviations in its geometry, leads to different dynamic impedances of the blades. These variations in impedance cause significant amplification of the forced response of the bladed disk. We propose to focus on industrial methods that can be used to simulate the mistuned dynamic behavior of a bladed disk in the case of small “frequency mistuning” or of greater “large mistuning”. This method, based on the modal synthesis technique (Benfield and Hruda family), can be classified as a “first generation method”. The first originality of this method consists in taking into account major mistuning, such as that induced by an FOD event. A second innovation concerns the use of these methods to assess in probabilistic terms the correction factor to apply to the maximum dynamic level measured during engine certification tests. The first part of the paper relates to the proposed method and its validation for large-scale “shape” mistuning on an academic test case. In the second section, we present a number of industrial applications: • An application of “geometric mistuning” is presented on a bladed disk after an FOD event. The same kind of analysis as previously described is carried out and the numerical results are commented. • The mistuning analyses are carried out on an industrial blisk with a local defect. The sensitivity of the response amplification factor is calculated versus the mistuning rate using a probabilistic approach. • Another application of the mistuning strategy is discussed: it concerns the use of the mistuning method to specify the correction factor of partial dynamic strain gauge measurements in order to assess the maximum level of a bladed disk. • The last application is dedicated to the simulation of intentional mistuning to increase the aeroelastic stability of an industrial test case.

Copyright © 2006 by ASME
Topics: Disks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In