0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Modelling of Underplatform Friction Dampers for Analysis of Bladed Disc Vibration

[+] Author Affiliations
E. P. Petrov, D. J. Ewins

Imperial College London, London, UK

Paper No. GT2006-90146, pp. 769-778; 10 pages
doi:10.1115/GT2006-90146
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4240-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Advanced structural dynamic models for both wedge and split underplatform dampers have been developed. The new damper models take into account inertia forces and the effects of normal load variation on stick-slip transitions at the contact interfaces. The damper models are formulated for the general case of multiharmonic forced response analysis. An approach for using the new damper models in the dynamic analysis of large-scale finite element models of bladed discs is proposed and realised. Numerical investigations of bladed discs are performed to demonstrate the capabilities of the new models and an analysis of the influence of the damper parameters on the forced response of bladed discs is made.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In