0

Full Content is available to subscribers

Subscribe/Learn More  >

Computation of Eigenvalues and Eigenvectors of a Mistuned Bladed Disk

[+] Author Affiliations
Alok Sinha

Pennsylvania State University, University Park, PA

Paper No. GT2006-90087, pp. 729-737; 9 pages
doi:10.1115/GT2006-90087
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4240-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

This paper deals with fundamental aspects of variations in eigenvalues and eigenvectors of a bladed disk due to mistuning. First, the existence of derivatives of repeated eigenvalues and corresponding eigenvectors is thoroughly examined. Next, an algorithm is developed to compute these derivatives. It is shown how a Taylor series expansion can be used to efficiently compute eigenvalues and eigenvectors of a mistuned system. This methodology is developed for perturbations in both repeated and unrepeated eigenvalues of the tuned system. Lastly, numerical examples are presented.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In