0

Full Content is available to subscribers

Subscribe/Learn More  >

An Overview of Turbine and Combustor Development for Coal-Based Oxy-Syngas Systems

[+] Author Affiliations
Keith Pronske, Larry Trowsdale, Scott Macadam, Fermin Viteri

Clean Energy Systems, Inc., Rancho Cordova, CA

Frank Bevc, Dennis Horazak

Siemens Power Generation, Inc., Orlando, FL

Paper No. GT2006-90816, pp. 817-828; 12 pages
doi:10.1115/GT2006-90816
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME

abstract

Coal combustion technology is required that is capable of: (1) co-producing electricity and hydrogen from coal while; (2) achieving high efficiency, low capital cost, low operating cost, and near-zero atmospheric emissions; and (3) producing a sequestration-ready carbon dioxide stream. Clean Energy Systems, Inc. (CES) and Siemens Power Generation, Inc., are developing this technology that would lead to a 300 to 600 MW, design for a zero emissions coal syngas plant, targeted for the year 2015, CES and Siemens received awards on September 30, 2005 from the U.S. Department of Energy’s; Office of Fossil Energy Turbine Technology R&D Program. These awards are designed to advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants. Studies have shown [1–4] that replacing air with nearly pure oxygen and steam in a turbine’s combustion chamber is a promising approach to designing coal based power plants with high efficiency and near-zero emissions. Siemens will combine current steam and gas turbine technologies to design an optimized turbine that uses oxygen with coal derived hydrogen fuels in the combustion process under a DOE Turbine Development Project [5]. CES will develop and demonstrate a new combustor technology powered by coal syngas and oxygen under a DOE Combustor Development Project [6]. The proposed programs build upon twelve years of prior technical work and government-sponsored research to develop and demonstrate zero-emission fossil fuel power generation. The planned system studies build upon previous work conducted by private, public, and foreign organizations, including CES [7–9], DOE’s National Energy Technology Laboratory (NETL) [10–12], Air Liquide (AL) [1,13], Lawrence Livermore National Laboratory (LLNL) [2], Fern Engineering, Inc. [14], and Japanese investigators [15, 16]. Other pertinent data related to coal gasification, advanced air separation unit (ASU), plant integration and plant systems optimization, etc., can be found in references [17–23].

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In