Full Content is available to subscribers

Subscribe/Learn More  >

An Assessment of High-Fogging Potential for Enhanced Compressor Performance

[+] Author Affiliations
Kyoung Hoon Kim

Kumoh National Institute of Technology, Geongbuk, Korea

Horacio Perez-Blanco

Pennsylvania State University, University Park, PA

Paper No. GT2006-90482, pp. 693-701; 9 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME


Humidified gas turbines have the potential of enhanced cycle efficiencies with moderate initial cost. Evaporatively-cooled air compression is of importance to the power generation industry. The present work is aimed at contributing to a number of unanswered questions concerning the wet-compression process. Current operational margins limit the vapor mass fraction to 1∼2% by mass of the inlet flow. Yet, machines specifically designed to accommodate higher mass fractions are conceivable. Our aim is to explain the theoretical limits of those machines via a heat and mass transfer model. Continuous compression cooling via evaporation is modeled numerically based on droplet evaporation analysis. Parametric studies show the effect of variables such as droplet size, water injection ratio or compression ratio on transient behavior. Wet compression parameters such as evaporation time, compressor outlet temperature and compression work are estimated.

Copyright © 2006 by ASME
Topics: Compressors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In