Full Content is available to subscribers

Subscribe/Learn More  >

Blood Flow Through Channels and Clearances in Implantable Pumps

[+] Author Affiliations
Steven W. Day

Rochester Institute of Technology, Rochester, NY

Paper No. ICNMM2007-30159, pp. 1015-1022; 8 pages
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5


Implantable rotary blood pumps are very effective at supporting patients with heart failure. New designs demonstrate distinct advantages over their predecessor diaphragm type pumps and have generated vast interest in the medical devices community, as demonstrated by hundreds of technical publications and newer commercially available devices. In addition to mechanical design criteria, these pumps share the requirement of moving a relatively large amount of blood through a miniaturized pump without damaging the blood cells. The fluid channels within the impeller are typically 1–3 mm wide and the clearance between the blades, rotating at 2,000–10,000 rpm, and the stationary housing is approximately 100–300μm. This paper gives examples of experimental and numerical methods to characterize the flow field, and a summary of how the flow affects blood cells and design strategies to minimize blood damage.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In