0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis of APT (Atmospheric Pressure Turbine): Molten Carbonate Fuel Cell Hybrid System

[+] Author Affiliations
Y. Tsujikawa, K. Kaneko, T. Yamauchi

Osaka Prefecture University, Sakai, Japan

S. Katsura

Kansai Research Institute, Inc., Kyoto, Japan

Paper No. GT2006-90091, pp. 589-595; 7 pages
doi:10.1115/GT2006-90091
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME

abstract

Molten Carbonate Fuel Cell (MCFC) has been extensively developed in many countries as a high efficient energy converter. Such high temperature fuel cell can be operated as a hybrid system of integrating of turbo machinery. A major decision is whether to place the cell stack in pressurized or unpressurized section. This paper discusses the exhaust energy recovery from fuel cells by use of turbo machines under unpressurized conditions, working with inverted Brayton cycle in which turbine expansion, cooling by heat exchanger and draft by compressor are made in an open cycle mode. It is denoted as “atmospheric pressure turbine (APT)”.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In