0

Full Content is available to subscribers

Subscribe/Learn More  >

Estimating Roughness Parameters Resulting From Various Machining Techniques for Fluid Flow Applications

[+] Author Affiliations
Perry L. Young, Timothy P. Brackbill, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. ICNMM2007-30033, pp. 827-836; 10 pages
doi:10.1115/ICNMM2007-30033
From:
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME

abstract

Recently, a set of new roughness parameters was proposed by Kandlikar et al. [1] and Taylor et al. [2] for reporting surface roughness as related to fluid flow. The average roughness Ra parameter is often used in microfluidic applications, but this parameter alone is insufficient for describing surface roughness; a specimen with deep grooves and sharp obstructions can share the same average roughness value as a relatively smooth surface with low uniform surface roughness. Since the average roughness parameter is broad, it is difficult to access the surface topography features that result from different machining processes or etches. A profilometer and a digital microscope are used to examine the surface roughness profiles of various materials submitted to different machining techniques. The materials studied will be similar to those used for microchannels including aluminum, stainless steel, copper, and silicon. Depending on the material, these samples are submitted to several machining processes including milling, grinding, fly cutting, and microfabrication techniques. These machining processes and microfabrication techniques are of practical interest in microfluidics applications. After studying the surface roughness patterns exhibited in these samples, the roughness parameters employed in some of the recent roughness models are evaluated. This study is expected to provide more understanding of assorted surface roughness.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In