0

Full Content is available to subscribers

Subscribe/Learn More  >

Temperature Dependence of Thermal Conductivity of Amorphous and Crystal Thin Film by Molecular Dynamics Simulation

[+] Author Affiliations
Zhengxing Huang, Zhenan Tang, Suyuan Bai, Jun Yu

Dalian University of Technology, Dalian, China

Paper No. ICNMM2007-30085, pp. 763-766; 4 pages
doi:10.1115/ICNMM2007-30085
From:
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME

abstract

For crystal materials, thermal conductivity (TC) is proportional to T3 at low temperatures and to T−1 at high temperatures. TCs of most amorphous materials decrease with the decreasing temperatures. If a material is thin film, boundary will influence the TC and then influence the temperature dependence. In this paper, we calculate the TC of crystal and amorphous SiO2 thin films, which is a commonly used material in micro devices and Integrated Circuits, by NEMD simulations. The calculation temperatures are from 100K to 700K and the thicknesses are from 2nm to 8nm. TCs of crystal thin films reach their peak values at different temperatures for different thicknesses. The smaller thickness the larger peak values obtained. But for amorphous thin films, the results show that the temperature dependence of thin films is the same as bulk materials and not relative to their thicknesses. The obtained temperature dependence of the thin films is consistent with some previous measurements and the theory predictions.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In