Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Engine Performance Under Compressor Inlet Flow Distortion Using Streamline Curvature

[+] Author Affiliations
Vassilios Pachidis, Pericles Pilidis

Cranfield University, Cranfield, Bedfordshire, UK

Ioannis Templalexis, Petros Kotsiopoulos

Hellenic Air Force Academy, Dekeleia Air Base, Greece

Theodosios Alexander

Glasgow University, Glasgow, UK

Paper No. GT2006-90806, pp. 279-295; 17 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME


Traditionally, engine performance has been simulated based on non-dimensional maps for compressors and turbines. Component characteristic maps assume by default a given state of inlet conditions which can not be easily altered in order to simulate two-dimensional or three-dimensional flow phenomena. Inlet flow distortion, for example, is usually simulated by applying empirical correction factors and modifiers to default component characteristics, alternatively, the parallel compressor theory may be applied. The accuracy of the above methods has been rather questionable since they are unable to capture in sufficient fidelity component-level, complex physical processes and analyze them in the context of the whole engine performance. The technique described in this paper integrates a zero-dimensional (non-dimensional) gas turbine modeling and performance simulation system and a two-dimensional, streamline curvature compressor software. The two-dimensional compressor software can fully define the characteristics of a compressor at several operating condition and is subsequently used in the zero-dimensional cycle analysis to provide a more accurate, physics-based estimate of compressor performance under clean and distorted inlet conditions, replacing the default compressor maps. The high-fidelity component communicates with the lower fidelity cycle via a fully automatic and iterative process for the determination of the correct operating point. This study discusses in detail the development, validation and integration of the two-dimensional, streamline curvature compressor software and presents the various loss models used in the code. It also discusses the relative changes in the performance of a two-stage, experimental compressor with different types of radial pressure distortion obtained by running the two-dimensional streamline curvature compressor software independently. Moreover, the performance of a notional engine model, utilizing the coupled, two-dimensional compressor, under distorted conditions is discussed in detail and compared against the engine performance under clean conditions.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In