Full Content is available to subscribers

Subscribe/Learn More  >

Microfluidic Control Using Vapor Based Valves

[+] Author Affiliations
Wei Xu, Mark Bachman, G. P. Li

University of California at Irvine, Irvine, CA

Hong Xue

California State Polytechnic University, Pomona, CA

Paper No. ICNMM2007-30224, pp. 607-611; 5 pages
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME


Microflow valving and regulating are two important functions for microfluidic systems for applications such as Lab-on-Chip. Although silicon based counterparts have been studied extensively, few good technologies exist for polymer based microvalves and regulators. In this paper, we present designs and methods for microvalve and microflow regulators that are readily integrated into polymer microfluidic devices. The technologies utilize “air-pocket” structures built into the sidewalls of the microchannels. When liquid is filled in such a channel, air is trapped in “air pocket” structures due to the hydrophobicity of the polymer. By creating a small thermal gradient between the fluid in the channel and the air in the pockets, one can controllably evaporate fluid into the air pocket where it condenses. This displaces air out of the pocket into the flow channel, increasing the resistance to flow. The air valve retreats to its original pocket when the temperature gradient is removed, thus allowing one to increase or decrease fluid flow at will. If the temperature gradient is maintained long enough, the air will completely block the channel, forming an irreversible valving of the flow. Therefore, the same device can be used as either a valve or flow-regulating device. Microfluidic prototypes were built and tested using this technology. The results show successful constant flow delivery as well as valve function. This novel vapor based microflow valve and regulator has advantages of low cost, simple design, and both ease of fabrication and integration.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In