0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of the 3D Flow Induced by Propagation of Plane-Wave Deformations on Thin Membranes Inside Microchannels

[+] Author Affiliations
Ahmet Fatih Tabak, Serhat Yeşilyurt

Sabanci University, Istanbul, Turkey

Paper No. ICNMM2007-30135, pp. 577-585; 9 pages
doi:10.1115/ICNMM2007-30135
From:
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME

abstract

Propulsion mechanisms of microorganisms are based on either beating or screw-like motion of thin elastic biopolymers. Arguably, this motion is optimal for propulsion at very low Reynolds numbers. Similar actuation mechanisms can be utilized in the design of an autonomous microswimmer or even a micropump. In principle, propagation of plane-wave deformations on a thin-membrane placed inside a channel can lead to a net flow in the direction of the wave propagation. In this study we present effects of the amplitude, frequency, and the width of the membrane on the time-averaged flow rate and the rate of work done on the fluid by the membrane by means of three-dimensional transient simulations of flows induced by plane-wave deformations on membranes. Navier-Stokes and continuity equations are used to model the flow on a time-varying domain, which is prescribed with respect to the motion of the membrane. Third party commercial software, COMSOL, is used in to solve the finite-element representation of the 3D time-dependent flow on moving mesh. Numerical simulations show that the flow inside the microchannel depends on the square of the amplitude and is proportional to the excitation frequency. Lastly, characteristic flow rate vs. pressure head curve and efficiency of a typical pump are obtained from 3D transient simulations, and presented here.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In